Actions

Le Choix

From Baripedia

La rationalité économique[edit | edit source]

L'hypothèse comportementale de la rationalité nous permet d'affirmer que le consommateur va sélectionner la meilleure alternative possible qui s'offre à lui.

Démarche : Le consommateur doit faire un choix sous contrainte.

Il va sélectionner l'alternative qui lui apporte la plus grande satisfaction étant donné ses contraintes.

Formellement : maximisation de la fonction d'utilité sous la contrainte de budget.

L'ensemble des choix possibles (respectant la contrainte de budget) est l'ensemble des choix.

Où se situe le meilleur choix possible sur le graphique usuel à deux biens ?

Choix rationnel contraint[edit | edit source]

Microéconomie contrainte budget choix rationnel contraint 1.gif

Le Choix optimal[edit | edit source]

() est le panier préféré parmi ceux que l'agent peut s'offrir.

Microéconomie contrainte budget choix optimal 1.png

Choix optimal[edit | edit source]

Confrontation entre préférences et possibilités

Pourquoi le panier b domine-t-il tous les autres ?

Microéconomie contrainte budget choix optimal 2.png

Le panier préféré pour un agent, étant donné les prix et le revenu, est dénoté par ().

Il se trouve sur la courbe d’indifférence la plus haute possible, tout en étant sur la contrainte budgétaire

Nous allons utiliser ces propriétés pour le déterminer formellement.

() satisfait 2 conditions:

(a) tout le budget est dépensé;
(b) La pente de la droite de budget, , et la pente de la CI contenant () sont égales à ().

Cette information va nous permettre de trouver le panier optimal, étant donné des préférences (une fonction d'utilité), des prix et le revenu.

Exemple[edit | edit source]

Supposons les préférences suivantes :

Alors :

Utilité Cobb-Douglas[edit | edit source]

Le TMS est égal à :

À (), soit :

Échec d'analyse (erreur de syntaxe): {\displaystyle - \frac {ax_2}{bx_1} = - \frac {p_1}{p_2} ⇒ x_2^* = \frac {bp_1}{ap_2} x_1^*} (A)

() utilise tout le budget :

(B)

Nous savons donc que (1) en substituant dans (B).

Nous obtenons alors : .

Ce qui simplifie :

En substituant dans , nous obtenons :

Nous avons donc trouvé que le panier préféré pour un consommateur avec des préférence CB de la forme :

est,

Microéconomie contrainte budget exemple utilité Cobb-Douglas 1.png

Résumé[edit | edit source]

Une méthode de résolution dans un cas "standard". Il faut utiliser ces deux conditions, toujours vraies à un choix optimal :

(a)
(b) la pente de la droite de budget, , et de la CI contenant () sont égales à ().

Le choix: cas spécifiques[edit | edit source]

Que se passe-t-il si  ?

Si un agent ne consomme que d'un bien (et pas du tout de l'autre) nous disons que le panier optimal est une solution de coin.

Exemple : Substituts Parfaits[edit | edit source]

Microéconomie contrainte budget exemple substituts Parfaits 1.png
Microéconomie contrainte budget exemple substituts Parfaits 2.png
Microéconomie contrainte budget exemple substituts Parfaits 3.png
Microéconomie contrainte budget exemple substituts Parfaits 4.png

Exemple : Compléments Parfaits[edit | edit source]

Microéconomie contrainte budget exemple compléments parfaits 1.png
Microéconomie contrainte budget exemple compléments parfaits 2.png
Microéconomie contrainte budget exemple compléments parfaits 3.png
Microéconomie contrainte budget exemple compléments parfaits 4.png
Microéconomie contrainte budget exemple compléments parfaits 5.png

Rappel : Problème de Maximisation[edit | edit source]

Nous avons vu une première méthode de résolution (par substitution).

Une autre méthode, plus générale, est la méthode dite du multiplicateur de Lagrange.

Le Lagrangien s’écrit comme suit:

Le but est de maximiser directement , qui contient l’utilité et les contraintes.

Les conditions de premier ordre sont :

Les deux premières conditions ensemble donnent à nouveau :  

Annexes[edit | edit source]

Références[edit | edit source]