« From theory to data » : différence entre les versions

De Baripedia
 
(13 versions intermédiaires par le même utilisateur non affichées)
Ligne 1 : Ligne 1 :
{{Infobox Lecture
| image =
| image_caption =
| faculté = [[Faculté des sciences de la société]]
| département = [[Département de science politique et relations internationales]]
| professeurs = [[Marco Giugni]]<ref>[https://unige.ch/sciences-societe/speri/membres/marco-giugni/ Page personnelle de Marco Giugni sur le site de l'Université de Genève]</ref>
| assistants = 
| enregistrement =
| cours = [[Introduction to the methods of political science]]
| lectures =
* [[Introductory course on the methods of political science]]
* [[The positivist paradigm and the interpretative paradigm]]
* [[Fundamental scientific methods]]
* [[From theory to data]]
* [[Data collection]]
* [[The processing of data]]
}}
When we do research and in particular quantitative research, that is, research that is part of the post-positive paradigm, operationalization is the key moment in the process. Without a good operationalization, one cannot make a relevant research, because it is a formalized structure.
When we do research and in particular quantitative research, that is, research that is part of the post-positive paradigm, operationalization is the key moment in the process. Without a good operationalization, one cannot make a relevant research, because it is a formalized structure.
{{Translations
| fr = De la théorie aux données
| es = De la teoría a los datos
| it = Dalla teoria ai dati
}}


= Scientific Research =
= Scientific Research =
Ligne 8 : Ligne 32 :
First of all, there is the idea of a creative process, because research is also about creation, we seek to discover something. What is important is to follow specific procedures that are pre-established and consolidated within the scientific community.
First of all, there is the idea of a creative process, because research is also about creation, we seek to discover something. What is important is to follow specific procedures that are pre-established and consolidated within the scientific community.


== La recherche empirique ==
== Empirical research ==
According to Raymond Boudon, "quantitative surveys are those that collect comparable information on a set of elements from one element to another. It is this compatibility of information that then allows the enumeration and more generally the quantitative analysis of the data.<ref>R. Boudon; Les méthodes en sociologie, p.31 </ref>.
According to Raymond Boudon, "quantitative surveys are those that collect comparable information on a set of elements from one element to another. It is this compatibility of information that then allows the enumeration and more generally the quantitative analysis of the data.<ref>R. Boudon; Les méthodes en sociologie, p.31 </ref>
   
   
Empirical research must develop within a framework that is collectively shared. It is a process where research is collective, because it is based on a process produced by others, the process must also be public with the idea of transparency that is important in research. Everything must be transparent, controllable by others. All the procedures implemented must be controllable by others with the idea of replicating what has been done, everything must be replicable. Research is a collective and public process that must be subject to criteria of transparency and control.
Empirical research must develop within a framework that is collectively shared. It is a process where research is collective, because it is based on a process produced by others, the process must also be public with the idea of transparency that is important in research. Everything must be transparent, controllable by others. All the procedures implemented must be controllable by others with the idea of replicating what has been done, everything must be replicable. Research is a collective and public process that must be subject to criteria of transparency and control.
Ligne 19 : Ligne 43 :
*in the choice of technical instruments used.
*in the choice of technical instruments used.
   
   
It is at these two moments that the collective research frame of reference is seen, expressed and found.
At these two moments, the collective research frame of reference is seen, expressed and found.


== Les cinq phases du processus et la question de recherche ==
== The five phases of the process and the research question ==
Corbetta fait une différence entre les phases de la recherche et les processus qui permettent de mieux se rendre compte des différentes étapes de ces processus.
Corbetta makes a difference between the phases of research and the processes that allow a better understanding of the different stages of these processes.


[[Fichier:Phases et processus de recherche.png|400px|vignette|droite]]
[[Fichier:Phases et processus de recherche.png|400px|vignette|droite]]
   
   
1) '''Question de recherche'''
1) '''Research Question'''


2) '''Théorie''' : formulation d’une théorie ou le fait de s’appuyer sur une théorie.
2) '''Theory''': formulating a theory or relying on a theory.


→ '''déduction''' (du général au particulier) : on déduit les hypothèses d’une théorie, on va du général au plus spécifique.
→ '''deduction''' (from the general to the particular): hypotheses are deduced from a theory, from the general to the most specific.


3) '''Hypothèse''' : les hypothèses découlent d’une théorie existante, on va essayer de les vérifier, les falsifier à travers la recherche.
3) '''Hypothesis''': hypotheses stem from an existing theory, we will try to verify them, falsify them through research.


→ '''phase d'opérationnalisation''' : phase de construction du dessin de recherche.
→ '''operationalization phase''': construction phase of the research drawing.


4) '''Recueil des données''' : c'est la collecte afin de vérifier les hypothèses de façon empirique. Cela concerne le plan de travail, il y a un certain nombre de décisions à prendre comme le type de données, le nombre de cas à analyser, la localisation de cas, la manière de les sélectionner et la méthode de collecte.
4) '''Data collection''': is the collection to empirically test the hypotheses. This concerns the work plan, there are a number of decisions to be made such as the type of data, the number of cases to be analysed, the location of cases, how to select them and the method of collection.


→ '''organisation des données''' : distinction entre informations et données, les données ont été organisées ; on va créer une matrice de données selon l’approche quantitative. Les données sont le matériel brut qu’on doit organiser afin de démonter ou tester une hypothèse, ce sont les informations organisées de façon à pouvoir les analyser.
→ '''data organization''': distinction between information and data, the data have been organized; we will create a data matrix according to the quantitative approach. Data is the raw material that must be organized in order to dismantle or test a hypothesis; it is information organized in such a way that it can be analyzed.


5) '''Analyse des données'''
5) '''Data Analysis'''


→ '''interprétation'''
→ '''interpretation'''


6) '''Résultats'''
6) '''Results'''


→ '''induction''' : on monte à la généralité et on revient sur la théorie ; relié par une méthode de feedbacks à la théorie passant du particulier au général à travers les résultats. Il y a l’idée que les résultats vont être utilisés pour créer des théories et analyser des hypothèses.
→ '''induction''': we go up to the generality and we come back on the theory; connected by a method of feedback to the theory passing from the particular to the general through the results. There is the idea that the results will be used to create theories and analyze hypotheses.


Dans la réalité de la recherche, les étapes sont souvent distribuées d’une manière différente ; souvent les hypothèses sont élaborées après que les données aient été collectées. Parfois on développe la théorie après avoir analysé les données, parfois pendant la phase empirique, parfois le thème est nouveau est inconnu c’est pourquoi on fait une recherche purement descriptive, parfois les recueils des données ne part pas d’une théorie spécifique, car on veut inclure un champ plus large qui permet d’analyser plusieurs hypothèses.
In the reality of research, the steps are often distributed in a different way; often assumptions are developed after the data have been collected. Sometimes the theory is developed after having analysed the data, sometimes during the empirical phase, sometimes the theme is new and unknown that is why a purely descriptive research is made, sometimes the data collections do not start from a specific theory, because we want to include a wider field that allows to analyze several hypotheses.


== Processus d’opérationnalisation des concepts ==
== Process of operationalization of concepts ==
On distingue deux phases pour traduire les concepts théoriques en quelque chose d’empirique.
There are two phases to translate theoretical concepts into something empirical.
*'''opérationnalisation des concepts''' : le fait de transformer des concepts en variables, les variables étant quelque chose qu’on peut manipuler alors qu’on ne peut traiter les concepts, car ils sont abstraits.
*'''operationalization of concepts''': transforming concepts into variables, variables being something that can be manipulated while concepts cannot be processed because they are abstract.
*'''choix des instruments de recherche''' : instruments et procédures de collecte des données.
*'''selection of research instruments''': data collection instruments and procedures.


= Théorie et hypothèses =
= Theory and hypotheses =
C’est le processus de « déduction » qui fait le lien entre la théorie et l'hypothèse donc découle de la théorie. Cependant il est difficile de faire la distinction entre théorie et hypothèses.
It is the process of "deduction" that makes the link between theory and hypothesis, therefore derives from theory. However, it is difficult to distinguish between theory and hypotheses.


== Théorie ==
== Theory ==
Selon Corbetta, une théorie est un ensemble de propositions liées entre elles de manière organique qui se situe à un degré d’abstraction et de généralisation élevé par rapport à la réalité empirique, qui découle de régularités empiriques et à partir desquels on peut faire des prévisions empiriques.
According to Corbetta, a theory is a set of propositions that are organically linked to each other and that is at a high degree of abstraction and generalization with respect to empirical reality, which derives from empirical regularities and from which empirical predictions can be made.
   
   
*'''ensemble de propositions ''': ce n’est pas une proposition, mais plusieurs propositions, elles sont articulées et liées entre elles.
*'''set of proposals''': this is not one proposal, but several proposals, they are articulated and interrelated.
*'''abstraction de propositions et généralisation''' : la théorie se situe à un niveau abstrait. Une théorie est quelque chose qui a pour vocation d’être générale.
*'''abstraction of proposals and generalization''': the theory is at an abstract level. A theory is something that is intended to be general.
*'''la théorie découle de régularités empiriques''' : idée que la théorie vient de recherches antérieures et de régularités empiriques qu’on a pu observer de manière systématique et qu’on retrouve dans différents contextes.
*'''Theory derives from empirical regularities''': the idea that theory comes from previous research and from empirical regularities that have been observed systematically and can be found in different contexts.
*'''permet des prévisions empiriques''' : permet de faire des prévisions selon des conditions et un contexte.
*'''allows empirical forecasts''': allows forecasts to be made according to conditions and context.


== Hypothèses ==
== Hypotheses ==
Selon Corbetta, une hypothèse est une proposition qui implique une relation entre deux ou plusieurs concepts qui se situent à un niveau d'abstraction et de généralité inférieur par rapport à la théorie et qui permet une traduction de la théorie en des termes empiriquement contrôlables.
According to Corbetta, a hypothesis is a proposition that implies a relationship between two or more concepts that are at a lower level of abstraction and generality than theory and that allows the theory to be translated into empirically controllable terms.
   
   
*'''niveau d'abstraction et de généralité inférieur à la théorie''' : les hypothèses sont spécifiques.
*'''level of abstraction and generality lower than theory''': assumptions are specific.
*'''caractère provisoire de l'hypothèse''' : les hypothèses sont soumises au contrôle en étant vérifiées et falsifiées, une hypothèse n’est jamais définitive.
*'''provisional nature of the hypothesis''': hypotheses are subject to control by being verified and falsified, a hypothesis is never definitive.


== Difference between theory and hypothesis ==
== Difference between theory and hypothesis ==
Ligne 79 : Ligne 103 :
A theory must be able to be articulated into one or more empirically controllable hypotheses that can be transformed into a series of hypotheses. This is the criterion of scientificity, the theory combines theoretical propositions.
A theory must be able to be articulated into one or more empirically controllable hypotheses that can be transformed into a series of hypotheses. This is the criterion of scientificity, the theory combines theoretical propositions.


== Critères de scientificité des hypothèses ==
== Criteria for the Scientificity of Assumptions ==
Il y a trois éléments importants :
There are three important elements:
*l’hypothèse ne doit pas être trop générale.
*the assumption should not be too general.
*une hypothèse doit être positive dans le sens où elle ne doit pas inclure une dimension normative, il ne doit pas y avoir de jugement.
*a hypothesis must be positive in the sense that it must not include a normative dimension, there must be no judgment.
*une hypothèse doit être formulée de manière à ce qu’elle soit falsifiable.
*a hypothesis must be formulated in such a way that it is falsifiable.
   
   
La contrôlabilité d'une hypothèse est fondamentale, on doit pouvoir la confronter avec des données de terrain. Il faut que l'hypothèse puisse être contrôlée.
The controllability of a hypothesis is fundamental. We must be able to compare it with field data. The hypothesis must be controllable.
 
According to Popper and Kuhn, a hypothesis must be falsifiable. This gives the hypothesis a scientific character because a good hypothesis must be refutable. For example, according to Popper, the proposition "God exists" is not a hypothesis because it is not refutable; however, the hypothesis "all swans are white" is falsifiable because they may be of a different colour. Thus the main characteristic that gives the relevance of a hypothesis is the fact that it is falsifiable.
*'''falsifiable hypotheses''': heavy objects tend down if nothing holds them back; it rains every Thursday.
*'''non-falsifiable hypotheses''': either it rains, or it does not rain; all the points of the circle are equidistant from the centre.
   
   
Selon Popper et Kuhn, une hypothèse doit pouvoir être falsifiée. Cela donne à l'hypothèse un caractère de scientificité, car une bonne hypothèse doit être réfutable. Par exemple, selon Popper, la proposition « dieu existe » n’est pas une hypothèse, car ce n’est pas réfutable ; par contre, l’hypothèse « tous les cygnes sont blancs » est falsifiable, car ils peuvent être d’une autre couleur. Ainsi la caractéristique principale qui donne la pertinence d’une hypothèse est le fait qu’elle soit falsifiable.
To sum up, the hypothesis to meet the criterion of scientificity must be falsifiable.
 
*'''hypothèses falsifiables''' : les objets lourds tendent vers le bas si rien ne les retient ; il pleut tous les jeudis.
== Examples of hypotheses in political science ==
*'''hypothèses non-falsifiables''' : soit il pleut, soit il ne pleut pas ; tous les points du cercle sont équidistants du centre.
Pour résumer, l'hypothèse pour répondre au critère de scientificité doit être falsifiable.


== Exemples d’hypothèses en science politique ==
=== Value Change Theory ===
Value change occurs through the replacement of successive generations of people. It is postulated that in post-war Europe there has been a transformation of value systems, from materialistic - security of material value, physical security - to post-materialistic - values linked to personal fulfilment and individual emancipation - to materialistic - security of material value.


=== Théorie du changement des valeurs ===
The theory consists in saying that this change is due to the fact that generations after the Second World War were socialized in a situation referring to two factors :
Le changement des valeurs se produit grâce à un remplacement de générations successives de personnes. On postule que dans l’Europe de l'après-guerre il y a eu une transformation des systèmes des valeurs, passant de matérialiste -sécurité de la valeur matérielle, sécurité physique- à post matérialistes -valeurs liées à l'épanouissement personnel et à l’émancipation individuelle-
*economic growth
*the expansion of the welfare state
   
   
La théorie consiste à dire que ce changement est dû au fait que des générations après la Deuxième guerre mondiale ont été socialisées dans une situation renvoyant à deux facteurs :
According to this theory, people socialized during the time of expansion developed post-materialistic needs because they did not have the need for security; hence there is a tendency to value scarce resources.
*la croissance économique
 
*l'expansion de l'état providence
There is another element that is focused on the idea of scarcity of certain resources, as people tend to favour resources that are scarce (economic wealth was daily), as they were socialized during the period of wealth expansion. On the other hand, this difference is greater in countries that have had greater economic expansion.
Selon cette théorie, les personnes socialisées pendant l'époque d'expansion ont développé des besoins post matérialiste, car ils n’avaient pas la nécessité de sécurité ; dès lors on a tendance à mettre la valeur sur des ressources rares.


Il y a un autre élément qui est focalisé sur l'idée de pénurie de certaines ressources, car les gens ont tendance à privilégier des ressources qui sont rares (la richesse économique était quotidienne), car ils ont été socialisés pendant la période d'expansion de richesses. D’autre part, cette différence est plus forte dans des pays qui ont eu une expansion économique plus grande.
In this case, one cannot yet test or falsify the theory, one must move from theory to hypotheses by going towards something a little more specific which makes it possible to corroborate the affirmations :
*young people are more post-materialistic than older people in Western countries: we are interested in young people compared to older people, the hypothesis is tested if young people are more post-materialistic than older people.
*the difference between young people is less young is greater in countries where the change in quality of life has been stronger, in other words in countries where economic expansion at that time was the most important as in Germany.
*Post-materialists are more numerous in the richest countries; indicators can easily be found to test this hypothesis.
   
   
Dans ce cas, on ne peut encore tester ou falsifier la théorie, il faut passer de la théorie aux hypothèses en allant vers quelque chose d’un peu plus spécifique qui permette de corroborer les affirmations :
There has been a set of organically articulated proposals, however this is useless to test the theory; for this it is necessary to formulate hypotheses that are also at the abstract and theoretical level.
*les jeunes sont plus post-matérialistes que les personnes âgées dans les pays occidentaux : on s’intéresse aux jeunes qu’on compare aux personnes plus âgées, l’hypothèse est vérifiée si les jeunes sont plus post-matérialistes que les personnes âgées.
*la différence entre jeunes est moins jeune est plus grande dans les pays ou le changement de la qualité de vie a été plus fort autrement dit dans les pays ou l’extension économique à ce moment a été le plus important comme en Allemagne.
*les personnes post-matérialistes sont plus nombreuses dans les pays les plus riches ; on peut facilement trouver des indicateurs qui permettent de tester cette hypothèse.
Il y a eu un ensemble de propositions articulées de manière organique, cependant cela ne sert à rien pour tester la théorie ; pour cela il faut formuler des hypothèses qui sont aussi au niveau abstrait et théorique.


=== Théorie psychosociologique du vote ===
=== Psychosocial Voting Theory ===
{{Article détaillé|Les modèles explicatifs du vote}}
{{Article détaillé|Les modèles explicatifs du vote}}


C’est une théorie du comportement politique dit aussi « modèle de Michigan » proposé dans les années 1950. Cette théorie postule que les gens votent parce qu’ils ont un sentiment de loyauté envers certains partis ; c'est grâce à l'identification partisane que les gens vont voter pour un parti, car on s’y identifie.
It is a theory of political behaviour also known as the "Michigan model" proposed in the 1950s. This theory postulates that people vote because they feel loyal to certain parties; it is through partisan identification that people will vote for a party because they identify with it.
 
Ce sentiment d’identification à un parti provient du processus de socialisation. Cependant on n’a pas assez de substance, on est au niveau d’un ensemble de propositions liées entre elles de manière organique.
This sense of party identification comes from the socialization process. However, we do not have enough substance, we are at the level of a set of proposals linked together in an organic way.
 
Il faut avant tout spécifier les hypothèses qui sont par exemple :
First of all, it is necessary to specify the hypotheses which are for example:
*les personnes qui s’identifient avec le parti socialiste tendent à voter pour le parti socialiste ; on est descendu d’un cran dans le degré d’abstraction.
*people who identify with the Socialist Party tend to vote for the Socialist Party; the degree of abstraction has fallen a notch.
*les personnes issues de milieux ouvriers tendent à voter pour le parti socialiste : c’est une hypothèse testable, car on peut facilement aller sur le terrain pour collecter des données.
*People from working-class backgrounds tend to vote for the socialist party: this is a testable hypothesis, because one can easily go to the field to collect data.
 
=== Theory of political opportunities ===
This theory says that people mobilize because they are unhappy or because there are certain political opportunities to take to the streets.


=== Théorie des opportunités politiques ===
The theory says that the forms and levels of mobilization depend on political opportunity structures. These political opportunities are to be sought in the structure of the state and in the degree of openness and closure of the state:
Cette théorie dit que les gens se mobilisent, car ils sont mécontents ou parce qu’il y a certaines opportunités politiques pour aller dans la rue.
*The demonstrations are smaller and at the same time they are more radical and violent in countries characterized by closed opportunity structures. We can test this hypothesis because we can identify more open or closed states.
*the more the police repress demonstrations, the more radical they tend to become. It is enough to observe manifestations: in this case, there is a problem of endogeneity which is the problem of reverse causality, because the hypothesis postulates that the more the police will repress the more there will be a tendency to radicalisation, however the relationship could be the opposite and we do not know what explains what.
La théorie dit que les formes et niveaux de la mobilisation dépendent des structures d'opportunités politiques. Ces opportunités politiques sont à chercher dans la structure de l’État et dans le degré d’ouverture et de fermeture de l’état :
*les manifestations sont moins grandes et en même temps elles sont plus radicales est violentes dans les pays caractérisés par des structures d’opportunités fermées. On peut tester cette hypothèse, car on peut identifier des États plus ouverts ou fermés.
*plus la police réprime les manifestations plus elles tendent à se radicaliser. Il suffit d’observer des manifestations : dans ce cas, il y a un problème de l’endogénéité qui est le problème de la causalité inversée, car l’hypothèse postule que plus la police va réprimer plus il y a aura une tendance à la radicalisation, toutefois la relation pourrait être inverse et on ne sait pas ce qui explique quoi.


= Operationalization =
= Operationalization =
Ligne 145 : Ligne 168 :
It is through the realization of concepts that one can establish an empiry.
It is through the realization of concepts that one can establish an empiry.


== Phases de l’opérationnalisation ==
== Phases of operationalization ==
Elle peut être divisée en plusieurs phases, ce sont les moments clefs du processus de recherche :
It can be divided into several phases, these are the key moments in the research process:
   
   
1) '''Rendre les concepts en des propriétés d'objets''' (unité d'analyse) : les concepts doivent être attribués et appliqués à des objets ; ce sont des unités d’analyses qui renvoient au choix d’analyse sur lequel on va travailler. En d’autres termes c’est passer d'un niveau conceptuel à un niveau empirique mesurable, transformer les concepts, il faut les appliquer à des objets concrets donc à des unités d'analyse.
1) '''Render concepts into object properties''' (unit of analysis): concepts must be assigned and applied to objects; they are units of analysis that refer to the choice of analysis on which we will work. In other words, it means moving from a conceptual level to a measurable empirical level, transforming concepts, applying them to concrete objects and thus to units of analysis.
 
Example :
*'''the concept of "power"''': must be able to be transformed into an object, for example, the role of power in an enterprise: we begin by defining the unit of analysis.
*'''Economic development''': must be applied to something concrete that could be the concept applied to nations.
*'''electoral participation''': one may be interested in territorial units that are collective property or individual property such as the frequency of participation in demonstrations.
   
   
Exemple :
Nota bene : these properties of objects will have different states depending on the objects in question, for example the economic development of France differs from that of Switzerland. The object properties vary according to the selected criterion.
*'''le concept de « pouvoir »''' : doit pouvoir être transformé en objet, par exemple, le rôle de pouvoir dans une entreprise : on commence par définir l’unité d’analyse.
 
*'''développement économique''' : doit être applique à quelque chose de concret qui pourrait être le concept appliqué aux nations.
*'''participation électorale''' : on peut s’intéresser à des unités territoriales qui sont des propriétés collectives ou une propriété individuelle comme la fréquence de participation à des manifestations.
   
   
Nota bene : ces propriétés d’objets auront des états différents en fonction des objets en question, par exemple le développement économique de la France diffère de celui de la Suisse. Les propriétés d’objet varient par rapport au critère choisi.
2) '''To give an operational definition of concepts''': rules must be established and decided in order to translate these concepts into empirical operations, in other words, rules must be established to translate the concepts into empirical operations.


Example :
2) '''Donner une définition opératoire des concepts''' : il faut établir et décider des règles afin de traduire ces concepts dans des opérations empiriques, en d’autres termes c’est établir des règles pour traduire les concepts en opérations empiriques.
*'''power concept''': power is defined first as the role you can have in an organization. Then we must specify the number of people over whom the individual exercises power (he can direct 1000 or 100).
*'''voter turnout''': if it is assumed that voter turnout is measured at the commune or canton level, then the percentage of voters in relation to the number of voters should be considered.
Exemple :
*'''concept de pouvoir''' : on définit le pouvoir d'abord en tant que rôle qu'on peut avoir dans une organisation. Ensuite on doit préciser le nombre de personnes sur lesquelles l’individu exerce le pouvoir (il peut diriger 1000 ou 100).
*'''participation électorale''' : si on postule que la participation électorale se mesure au niveau d’une commune ou d’un canton, alors faudrait s’intéresser au pourcentage de votant par rapport au nombre d’électeurs.
   
   


3) '''Appliquer la définition opératoire à des cas concrets''' : c’est la phase d’opérationnalisation au sens strict du terme, on est en train d’aller sur le terrain ce qui permet de définir une variable.
3) '''Apply the operational definition to concrete cases''': this is the operationalization phase in the strict sense of the term, we are going into the field which makes it possible to define a variable.
*'''variable''' : c'est le résultat du processus, on passe d'un concept à une variable, elles sont la concrétisation théorique d'un concept.
*'''variable''': it is the result of the process, we move from a concept to a variable, they are the theoretical concretization of a concept.
*'''modalité''' : à chaque modalité on applique une valeur comme, par exemple, pour le concept de niveau d'éducation : universitaire 5, primaire 1, etc. Cela permet d’évaluer le niveau d’éducation d’une personne par l’établissement de code.
*'''modality''': a value is applied to each modality as, for example, for the concept of level of education: university 5, primary 1, etc. This makes it possible to assess a person's level of education by establishing a code.
   
   
[[Fichier:Opérationnalisation- schéma.png|500px|vignette|centré]]
[[Fichier:Opérationnalisation- schéma.png|500px|vignette|centré]]


Dès lors l’opérationnalisation dans le sens strict du terme est le passage de la propriété (concept) à la variable qui dépend de la manière dont le passage se fait faisant qu’on peut avoir des variables différentes.
Therefore, operationalization in the strict sense of the term is the transition from the property (concept) to the variable that depends on how the transition is made so that one can have different variables.
 
Concept--to--to--to-property--to--to--to-variable
 
Operationalization depends on how the concepts are translated:
*categorization
*orderly
*measurement
*counting (counting units)
   
   
De concept--à--à--à--propriété--à--à--à--variable
It is necessary to reflect on what type of analysis we want to lead through the development of concepts.
 
L’opérationnalisation dépend de la manière dont on décide de traduire les concepts :
It is essential to define the concepts; the concept has a relationship of meaning, it is a fundamental element of scientific research.
*classification
 
*ordonnément
Operationalization: examples
*mesuration
*'''Weight''': weight of a book (1 kilo): it has no relation between the physical weight of a book and its impact in literature.
*comptage (compter des unités)
*'''Age''': Age of a person (20 years).
*'''Education''': level of education (university).
Il faut réfléchir sur quel type d’analyse on veut déboucher à travers l’élaboration des concepts.
*'''Power''': political role (MP, minister, senator): it is difficult to define who has the most power, these are roles in which we cannot establish a hierarchy.
*'''Participation''': Voting (frequency).
Il est primordial de définir les concepts ; le concept a un rapport de signification, c’est un élément fondamental de la recherche scientifique.
Opérationnalisation : exemples
*'''Poids''' : poids d'un livre (1 kilo) : il n'a pas de relation entre le poids physique d'un livre et son impact en la littérature.
*'''Âge''' : âge d'une personne (20 ans).
*'''Éducation''' : niveau d'études (université).
*'''Pouvoir''' : rôle politique (député, ministre, sénateur) : il est difficile de définir qui a le plus de pouvoir, ce sont des rôles dans lesquelles nous ne pouvons pas établir de hiérarchie.
*'''Participation''' : voter (fréquence).


== Unités d’analyse ==
== Unités d’analyse ==
Ligne 208 : Ligne 231 :
#'''relation''' : accords, collaborations, des relations organisationnelles ou interindividuelles.
#'''relation''' : accords, collaborations, des relations organisationnelles ou interindividuelles.
   
   
Les trois premiers niveaux d’analyses sont les plus fréquents, ce sont des variables agrégées. Il y a des variables structurelles ou globales qui caractérisent un individu ou un groupe en tant que tel. Les variables agrégées découlent d’opérations mathématiques sur des variables individuelles dont l’unité d’observation se situe à un niveau inférieur tandis que les variables structurelles se situent au niveau de l’unité d’analyse.
The first three levels of analysis are the most frequent, aggregated variables. There are structural or global variables that characterize an individual or group as such. Aggregate variables are derived from mathematical operations on individual variables whose unit of observation is at a lower level while structural variables are at the unit of analysis level.
 
À la fin du processus, on a des « cas » qui sont des exemplaires d’une analyse donnée inclus dans une recherche ; lorsque l‘on parle d’unité d’analyse c’est un cas abstrait ou général, tandis que le « cas » est concret est multiple à savoir ce que l’on va étudier.
At the end of the process, we have "cases" that are copies of a given analysis included in a research  when we speak of unit of analysis it is an abstract or general case, while the "case" is concrete is multiple to know what we are going to study.
 
Ainsi les « cas » sont les objets spécifiques de la recherche qu’on peut définir une fois qu’on est passé des étapes de définition d’un concept aux variables qui permettent de choisir des cas et de voir comment ils varient sur la variable découlant du processus.
Thus "cases" are the specific objects of research that can be defined once one has moved from the steps of defining a concept to the variables that allow one to choose cases and see how they vary on the variable resulting from the process.
 
Il n’y a pas vraiment de définition opératoire juste ou fausse, c’est une question d’être le plus explicite et le plus transparent possible. Dès lors, il faut expliciter et justifier le choix fait pendant la phase d’opérationnalisation.
There is really no right or wrong working definition, it is a matter of being as explicit and transparent as possible. Therefore, the choice made during the operationalization phase must be explained and justified.
 
Il reste toujours un décalage entre le niveau empirique et théorique, on ne peut jamais arriver à l’identification parfaite pouvant arriver à une définition opératoire juste ou fausse.
There is always a gap between the empirical and theoretical level, one can never arrive at the perfect identification that can arrive at a fair or false operative definition.
 
Finalement le danger dans cette phase n’est pas dans la réduction qui est inévitable, il se trouve dans la réification c‘est-à-dire dans le fait d’identifier le concept avec la variable.
Finally the danger in this phase is not in the reduction that is inevitable, but in the commodification, that is, in identifying the concept with the variable.
 
La définition opératoire doit répondre à des critères d’objectivité, il faut arriver à un processus contrôlable qui puisse être répété par d’autres.
The operational definition must meet criteria of objectivity, it must arrive at a controllable process that can be repeated by others.
 
Pour savoir si c'est une bonne opérationnalisation il faut justifier un choix, c’est-à-dire qu’elle doit répondre à un critère d'objectivité et de justification sans pour autant éliminer l'arbitraire.
To know if it is a good operationalization, a choice must be justified, that is, it must meet a criterion of objectivity and justification without eliminating arbitrariness.


== Critères de distinction des variables ==
== Criteria for distinguishing variables ==
La variable est un concept opérationnalisé ; il y a plusieurs manières de définir les variables et donc plusieurs manières de les classer :
The variable is an operationalized concept; there are several ways to define variables and therefore several ways to classify them:
   
   
*'''non-manipulables / manipulables''' :
*'''non-manipulable / manipulable''':
**'''non-manipulable''' : ce sont des variables qu’on ne peut modifier par exemple les caractéristiques sociodémographiques.
**'''non-manipulable''': these are variables that cannot be modified, for example, socio-demographic characteristics.
**'''manipulable''' : les questions à se poser.
**'''manipulable''': the questions to ask.
   
   
*'''dépendantes / indépendantes''' :
*'''dependent / independent''':
**'''dépendantes''' : variables expliquées ; c’est ce que l’on veut expliquer aussi appelé variable endogène.
**'''dependent''': variables explained; this is what we want to explain also called endogenous variable.
**'''indépendantes''' : variables explicatives ; elle est censée d'expliquer aussi appelée variable exogène.
**'''independent''': explanatory variables; it is supposed to explain also called exogenous variable.
   
   
*'''non-observées (latentes) / observées (manifestes)''' :
*'''unobserved (latent) / observed (manifest)''':
**'''non-observées''' : les valeurs sont des variables latentes non-observables.
**'''unobserved''': values are unobservable latent variables.
**'''observés''' : les opinions peuvent être par exemple observées.
**'''observed''': opinions can be observed, for example.


Nota bene : quand on travaille sur les valeurs en science-politique on aborde les attitudes ; à travers on va remonter à quelque chose de non-observable.
Nota bene : when we work on values in science-politics we approach attitudes  through we go back to something unobservable.
   
   
*'''Individuelles / collectives''' (agrégées, globales, contextuelles)
*I'''ndividual / collective''' (aggregate, global, contextual)
*'''Value processing''': this is the most important aspect, it is related to measurement. There are different types of variables. Knowing what type of variable we have to do will tell us what type of analysis we have to do; the whole process of operationalization and the end of the process, namely the creation of variables is fundamental leading to variables of different natures.
*'''Traitement des valeurs''' : c'est l'aspect le plus important, il est lié à la mesuration. Il existe différents types de variables. Savoir à quel type de variable on a à faire va nous dire à quel type d’analyse on a à faire ; tout le processus d’opérationnalisation et la fin du processus à savoir la création de variables est fondamental débouchant sur des variables de natures différentes.
== Types of variables ==
 
There are three types of variables that can be distinguished between four criteria
== Types de variables ==
Il y a trois types de variables qu’il est possible de distinguer entre quatre critères
   
   
{| cellspacing="0" cellpadding="20" border="1"
{| cellspacing="0" cellpadding="20" border="1"
!
!
!nominales
!nominal
!ordinales
!ordinales
!cardinales
!cardinales
|-
|-
|'''États de propriétés : les valeurs de la variable'''
|'''Property states: the values of the variable'''
|
|
Catégories non ordonnés et non ordonnables.
Non-ordered and non-ordinable categories.
   
   
ex : nationalité, religion
ex : nationality, religion
|
|
Aussi catégorielles, mais ordonnées ; on peut créer un ordre.
Also categorical, but ordered; one can create an order.
   
   
ex : niveau éducation, dans quelle mesure s'intéresse-t-on à quelque chose.
e.g. education level, to what extent are we interested in something.
|
|
Plus des catégories, mais des variables :
More categories, but variables :
*'''continues''' - ex : âge = 1 an, un mois, 3 heures),
*'''continue''' - ex : age = 1 year, 1 month, 3 hours),
*'''discrètes''' - ex : 1, 2, enfants, pas demi enfant !
*'''discreet''' - ex: 1, 2, children, not half child!
|-
|-
|'''Procédure d'opérationnalisation'''
|'''Operationalization procedure'''
|
|
Logique de classification.
Classification logic.
|
|
On peut les mettre dans un certain ordre. On peut les inclure dans des catégories différentes. Il y a un ordonnénement, la variable ordinale résulte de la définition opératoire qui consiste à donner un ordre aux différents objets.
We can put them in a certain order. They can be included in different categories. There is an ordonnénement, the ordinal variable results from the operative definition which consists in giving an order to the various objects.
|
|
*'''Mesuration''' :
*'''Measurement''' :
intervalle entre eux est le même (1 an, par exemple) -v. continues-
interval between them is the same (1 year, for example) -v. continuous-
*'''Comptage''' :
*'''Counting''' :
on peut les compter -v. discrètes-
we can count them -v. discreet-
|-
|-
|'''Caractéristiques de valeurs'''
|'''Value Characteristics'''
|
|
La caractéristique des valeurs est des noms.
The characteristic of values is names.
   
   
ex : canadien, suisse
ex : Canadian, Swiss
   
   
Les catégories doivent être exhaustives. Toutes les catégories doivent être contemplées et mutuellement exclusives.  
The categories must be exhaustive. All categories must be contemplated and mutually exclusive.  
|
|
Nombre avec propriétés ordinales.
Number with ordinal properties.
   
   
ex : peu, assez, très ; on associe un chiffre à chaque état, ce code est arbitraire.
ex: little, enough, very; we associate a number to each state, this code is arbitrary.
|
|
Nombre avec propriétés cardinales, le nombre reflète une propriété réelle.
Number with cardinal properties, the number reflects a real property.
   
   
ex : allé voter 5 fois, on ne peut pas associer des chiffres arbitrairement.
ex: went to vote 5 times, one cannot arbitrarily associate figures.
|-
|-
|'''Opérations effectuables sur les valeurs'''
|'''Operations that can be carried out on securities'''
|
|
Egalite ou inégalité.
Equality or inequality.
   
   
ex : musulman diffèrent de catholique
ex: Muslim differs from Catholic
|
|
Egalite ou inégalité, ordre supérieur ou inférieur.
Equality or inequality, higher or lower order.
|
|
On peut appliquer toutes les opérations mathématiques, équivalences, différences, multiplication, etc.
All mathematical operations, equivalences, differences, multiplication, etc. can be applied.
   
   
ex : un individu de 40 ans est deux fois un individu de 20 ans.
ex: a 40-year-old is twice a 20-year-old.
|}  
|}  


Ligne 316 : Ligne 337 :
One way to proceed are the scales, for example from 0 - 10 to define whether we are left or right. From then on, we pass from ordinal to cardinal variables.
One way to proceed are the scales, for example from 0 - 10 to define whether we are left or right. From then on, we pass from ordinal to cardinal variables.


== Rapport entre concepts et indicateurs ==
== Relationship between concepts and indicators ==
C’est l’opérationnalisation des concepts complexes. Généralement, les concepts complexes ne sont pas observables, on ne peut observer que leur manifestation, par exemple la déviance, la religion, le pouvoir. Ce sont concepts à un niveau de généralité plus élevé et abstrait, de plus on ne peut pas les observer directement.
It is the operationalization of complex concepts. Generally, complex concepts are not observable, one can only observe their manifestation, for example deviance, religion, power. These concepts are at a higher level of generality and abstract, and cannot be observed directly.
 
Most concepts in the social sciences can be defined as complex concepts that are more difficult to operationalize, that is, to transform them into the property of a unit of analysis.
 
Example: concept of religiosity; five different definitions are used to formulate it which are increasingly specific:
*believing in a divinity: allows us to move towards concretization.
*believing in the Christian god: each religion has its own definition of god.
*belong to the Catholic Church
*act according to the rules of the church: higher degrees of precision.
*go to church every Sunday: one can try to operationalize the concept of religiosity by reducing it to going to church every Sunday.
   
   
La plupart des concepts en sciences sociales peuvent être définis comme étant des concepts complexes qui sont plus difficiles à opérationnaliser c’est-à-dire de les transformer en propriété d’unité d’analyse.
Thus, we see how we can pass from the general to the specific through different passages.
 
Exemple : concept de religiosité ; on utilise cinq définitions différentes afin de le formuler qui sont de plus en plus spécifiques :
How to measure and operationalize these complex concepts?
*croire en une divinité : permet de se diriger vers la concrétisation.
 
*croire au dieu chrétien : chaque religion à sa définition de dieu.
The concept can be subdivided into sub-concepts called indicators. Indicators are crucial in the operationalization process.
*appartenir à l'Église catholique
 
*agir selon les règles de l'église : degrés de précision plus élevée.
An indicator is a simpler, more specific concept of the original concept that can be immediately translated into observable terms.
*aller à l'église tous les dimanches : on peut essayer d’opérationnaliser le concept de religiosité en le réduisant au fait d’aller à l’église tous les dimanches.
 
Indicators are linked to more general concepts by an indicative relationship between the concept and the indicator. We go down the generality scale to more specific concepts; it is a semantic representation relationship between the indicator and the concept it is supposed to represent, indicate, measure.
Ainsi, on voit comment peut-on passer du général au spécifique à travers différents passages.
 
In other words, we go down the scale of generality and abstraction from general concepts to more specific concepts linked to the first by affinities of meanings.
Comment mesurer, opérationnaliser ces différents concepts complexes ?
 
Nota bene : there is no right choice of indicators.
On peut subdiviser le concept en sous-concepts que l’on appelle des indicateurs. Les indicateurs sont cruciaux dans le processus d’opérationnalisation.
Un indicateur est un concept plus simple, plus spécifique du concept d’origine qui peut être immédiatement traduit en des termes observables.
Les indicateurs sont liés aux concepts plus généraux par un rapport d’indication entre le concept et l'indicateur. On descend dans l'échelle de généralité à des concepts plus spécifiques ; c’est un rapport de représentation sémantique entre l’indicateur et le concept qu’il est censé représenter, indiquer, mesurer.
En d’autres termes, on descend dans l’échelle de généralité et d’abstraction des concepts généraux à des concepts plus spécifiques liés au premier par des affinités de significations.
Nota bene : il n'y a pas un juste choix d’indicateurs.


== What is the relationship between the concepts and the indicator? ==
== What is the relationship between the concepts and the indicator? ==
Ligne 361 : Ligne 382 :
The indicators of a complex concept can be found in several ways according to logical reasoning and even according to common sense or more systematic according to what has been done in previous research with an importance of literature.
The indicators of a complex concept can be found in several ways according to logical reasoning and even according to common sense or more systematic according to what has been done in previous research with an importance of literature.


== Traduction empirique de concepts complexes : phases de l’opérationnalisation des concepts complexes ==
== Empirical translation of complex concepts: phases of the operationalization of complex concepts ==
   
   
Si on a des concepts qui ne sont pas multidimensionnels, cette phase peut être supprimée ; si on travaille avec un concept complexe, on doit avant tout simplifier le complexe en passant par des dimensions, c’est une réflexion théorique, on analyse le concept dans ses principales composantes de significations.
If we have concepts that are not multidimensional, this phase can be suppressed; if we work with a complex concept, we must first simplify the complex by going through dimensions, it is a theoretical reflection, we analyze the concept in its main components of meanings.
 
On distingue quatre phases :
There are four phases:
#Articulation du concept en dimensions : on réfléchit aux autres dimensions du concept comme, par exemple, la religiosité qui a des dimensions de pratiques, des idéologies, etc. C’est le passage d'abstractions générales au spécifique,on dit qu'on peut le diviser en sub-concepts pour chaque dimension, toutefois nous ne sommes pas encore dans la phase d’opérationnalisation. On s’interroge sur les différents aspects et significations des concepts.
#Articulation of the concept in dimensions: we reflect on the other dimensions of the concept such as, for example, religiosity which has dimensions of practices, ideologies, etc. It is the passage from general abstractions to specific, we say that we can divide it into sub-concepts for each dimension, however we are not yet in the operationalization phase. The different aspects and meanings of the concepts are questioned.
#Choix des indicateurs : on se pose la question de la traduction empirique, on décide des indicateurs qu’on va choisir. Les indicateurs sont des concepts plus spécifiques, on commence à faire un pas vers les variables comme par exemple s’intéresser à la participation à des rites qui relève de la participation rituelle soit de la dimension pratique religieuse.
#Choice of indicators: we ask ourselves the question of empirical translation, we decide which indicators we will choose. Indicators are more specific concepts, we are beginning to take a step towards variables such as being interested in participation in rituals which is part of the ritual participation or the religious practical dimension.
#Opérationnalisation : on transforme les indicateurs qui sont encore des concepts en variables. C’est la création des variables qui peuvent être, ordinales, cardinales ou intervalles. Par exemple en ce qui concerne la pratique religieuse on va mesurer et opérationnaliser la pratique religieuse qui est un indicateur d’une dimension de la religiosité c’est-à-dire le nombre de fois qu'on va à l'église par année. Cet indicateur relève de la composante comportementale, car choisir un indicateur « pratique » de la religion permet de déterminer une fréquence.
#Operationalization: indicators that are still concepts are transformed into variables. It is the creation of variables that can be, ordinal, cardinal or intervals. For example, with regard to religious practice, we will measure and operationalize religious practice, which is an indicator of one dimension of religiosity, that is, the number of times we go to church each year. This indicator falls under the behavioural component because choosing a "practical" indicator of religion determines a frequency.
#Formation des indices : on synthétise l'ensemble des indicateurs en une mesure globale. On va procéder à la formation des indices, on essaie de regrouper ces indicateurs sous une seule mesure cela peut-être par exemple la construction d’échelles ; sur le plan empirique, concret, spécifique, on essaie d’arriver à une mesure, car il est plus facile de travailler avec une variable qu’avec une multitude de variables.
#Index formation: all indicators are synthesized into a global measure. We are going to proceed with the formation of the indices, we are trying to group these indicators under a single measure, perhaps for example the construction of scales; on the empirical, concrete, specific level, we are trying to arrive at a measure, because it is easier to work with a variable than with a multitude of variables.
   
   
En fonction des objectifs de la recherche, on va choisir plusieurs mesures ou plusieurs indicateurs.
Depending on the research objectives, several measures or indicators will be selected.


[[Fichier:Traduction empirique de concepts complexes- schéma.png|500px|vignette|centré]]
[[Fichier:Traduction empirique de concepts complexes- schéma.png|500px|vignette|centré]]
Ligne 400 : Ligne 421 :
[[Fichier:Erreurs dans le passage des concepts aux indicateurs.png|500px|vignette|centré]]
[[Fichier:Erreurs dans le passage des concepts aux indicateurs.png|500px|vignette|centré]]
   
   
Il y a qu’une couverture partielle du concept par l’indicateur, mais il y a toujours un décalage entre la valeur observée et la vraie valeur liée au concept que l’on souhaite mesurer.
There is only partial coverage of the concept by the indicator, but there is always a gap between the observed value and the true value related to the concept being measured.
 
First, a distinction must be made between two types of errors:
*systematic error, "constant error
*accidental error, "variable error
   
   
Il faut d’abord faire une distinction entre deux types d’erreurs:
Total error is the sum of accidental error and systematic error.
*erreur systématique, « erreur constante »
 
*erreur accidentelle, « erreur variable »
TOTAL ERROR = ACCIDENTAL ERROR + SYSTEMATIC ERROR
*'''systematic error'''
L'erreur totale est la somme de l'erreur accidentelle et de l’erreur systématique.
Occur in all our measurements in a systematic way, for example everyone tends to overestimate their own participation.
ERREUR TOTALE = ERREUR ACCIDENTELLE + ERREUR SYSTÉMATIQUE
*'''erreur systématique'''
Se produisent dans toutes nos mesures d’une façon systématique, par exemple tout le monde a tendance à surestimer sa propre participation.
   
   
*'''erreur accidentelle'''
*'''accidental error'''
It is a variable error from one measurement to another, we measure differently at different times.
It is a variable error from one measurement to another, we measure differently at different times.


Ligne 420 : Ligne 440 :
There can be different types of errors resulting from a distinction between two phases:
There can be different types of errors resulting from a distinction between two phases:


1) '''phase d'indication''' : théorique
1) '''indication phase''': theoretical


On peut distinguer deux types d'erreurs :
Two types of errors can be distinguished:
*'''d'indication''' : dû à un mauvais choix des indicateurs, l’indicateur ne mesure pas ce qu’il est censé mesurer. C’est une erreur qui est presque par définition constante ou systématique, difficilement détectable sinon à travers le raisonnement logique et l’intuition. Dans ce cas il y a un problème de validité de l’indicateur c’est-à-dire qu’il ne mesure pas vraiment le concept qu’il est censé mesurer.
*'''Indicator''': Due to poor indicator selection, the indicator does not measure what it is intended to measure. It is an error that is almost by definition constant or systematic, difficult to detect except through logical reasoning and intuition. In this case there is a problem with the validity of the indicator, i.e. it does not really measure the concept it is supposed to measure.
*'''systématique''' : une fois mal fait, cela va se répercuter sur la recherche.
*'''systematic''': once done wrong, it will have repercussions on research.
   
   
2) '''phase empirique''' : erreur opérationnalisation
2) '''empirical phase''': operationalization error These errors can result from operationalization errors, they can be systematic or accidental. We can distinguish three sources of operationalization errors, in other words there are three moments at which we are subject to danger and risk of falling into these errors. However we will ignore the data processing error.
Ces erreurs peuvent découler d’erreurs d’opérationnalisations, elles peuvent être systématiques ou accidentelles. On peut distinguer trois sources d’erreurs d’opérationnalisation, en d’autres termes il y a trois moments auxquels on est soumis au danger et au risque de tomber dans ces erreurs. Toutefois nous allons ignorer l’erreur de traitement des données.
*'''case selection''': badly chosen cases, there may be errors.
*'''sélection des cas''' : cas mal choisis, il peut y avoir des erreurs.
**'''coverage''': consists of the fact that we did not cover the population we wanted to cover.
**'''couverture''' : consiste du fait qu'on n'ait pas couvert la population qu'on voulait couvrir.
**'''sampling''': if the sample is taken according to certain procedures, the percentage of error can be calculated.
**'''échantillonnage''' : si l'échantillon est fait selon certaines procédures on peut calculer le pourcentage d'erreur.
**'''non-response''': there are individuals who do not wish to respond to the survey, which will bias the analysis.
**'''non-réponse''' : il y a des individus qui ne souhaitent pas répondre au sondage ce qui va biaiser l’analyse.
   
   
Il y plusieurs sources d’erreurs liées à la sélection des sujets dans une première phase qui est aussi une erreur d’opérationnalisation.
There are several sources of errors related to the selection of subjects in a first phase which is also an operationalization error.
   
   
*'''d'observation''' : mauvaise observation des cas
*'''observation''': poor observation of cases
**'''interviewer''' : erreurs liées à l’interviewer, il pourrait soumettre l’interviewé à des pressions directes ou indirectes.
**'''interviewer''': errors linked to the interviewer, he/she could subject the interviewee to direct or indirect pressure.
**'''interviewé''' : la personne peut mal comprendre la question ou volontairement biaiser la recherche.
**'''interviewee''': the person may misunderstand the question or deliberately bias the research.
**'''instrument''' : la manière dont est administrée la question.
**'''instrument''': the manner in which the issue is administered.
**'''mode de traitement des données''' : analyser d’une mauvaise manière.
**'''data processing mode''': analyse in the wrong way.
   
   
There can be errors that make the initial concept no longer correspond or only partly correspond with the final concept which is the variable. To do this, we must be aware and put in place everything possible to reduce the time lag as much as possible. Note that the only type of error that can be measured is sampling error.
There can be errors that make the initial concept no longer correspond or only partly correspond with the final concept which is the variable. To do this, we must be aware and put in place everything possible to reduce the time lag as much as possible. Note that the only type of error that can be measured is sampling error.

Version actuelle datée du 5 février 2021 à 08:31


When we do research and in particular quantitative research, that is, research that is part of the post-positive paradigm, operationalization is the key moment in the process. Without a good operationalization, one cannot make a relevant research, because it is a formalized structure.

Scientific Research[modifier | modifier le wikicode]

How do you do a search?[modifier | modifier le wikicode]

According to Corbetta, the definition of scientific research is a creative process of discovery that develops along a predetermined itinerary and according to pre-established procedures that have been consolidated within the scientific community.

First of all, there is the idea of a creative process, because research is also about creation, we seek to discover something. What is important is to follow specific procedures that are pre-established and consolidated within the scientific community.

Empirical research[modifier | modifier le wikicode]

According to Raymond Boudon, "quantitative surveys are those that collect comparable information on a set of elements from one element to another. It is this compatibility of information that then allows the enumeration and more generally the quantitative analysis of the data.[2]

Empirical research must develop within a framework that is collectively shared. It is a process where research is collective, because it is based on a process produced by others, the process must also be public with the idea of transparency that is important in research. Everything must be transparent, controllable by others. All the procedures implemented must be controllable by others with the idea of replicating what has been done, everything must be replicable. Research is a collective and public process that must be subject to criteria of transparency and control.

Another criterion is that of cumulability, Newton said: "If I have seen further than others, it is because I have been carried by the shoulders of giants". The researcher can make a discovery because he or she can rely on the research of other researchers.

The researchers' collective frame of reference is structured around two moments:

  • in the logical structure of the research process.
  • in the choice of technical instruments used.

At these two moments, the collective research frame of reference is seen, expressed and found.

The five phases of the process and the research question[modifier | modifier le wikicode]

Corbetta makes a difference between the phases of research and the processes that allow a better understanding of the different stages of these processes.

Phases et processus de recherche.png

1) Research Question

2) Theory: formulating a theory or relying on a theory.

deduction (from the general to the particular): hypotheses are deduced from a theory, from the general to the most specific.

3) Hypothesis: hypotheses stem from an existing theory, we will try to verify them, falsify them through research.

operationalization phase: construction phase of the research drawing.

4) Data collection: is the collection to empirically test the hypotheses. This concerns the work plan, there are a number of decisions to be made such as the type of data, the number of cases to be analysed, the location of cases, how to select them and the method of collection.

data organization: distinction between information and data, the data have been organized; we will create a data matrix according to the quantitative approach. Data is the raw material that must be organized in order to dismantle or test a hypothesis; it is information organized in such a way that it can be analyzed.

5) Data Analysis

interpretation

6) Results

induction: we go up to the generality and we come back on the theory; connected by a method of feedback to the theory passing from the particular to the general through the results. There is the idea that the results will be used to create theories and analyze hypotheses.

In the reality of research, the steps are often distributed in a different way; often assumptions are developed after the data have been collected. Sometimes the theory is developed after having analysed the data, sometimes during the empirical phase, sometimes the theme is new and unknown that is why a purely descriptive research is made, sometimes the data collections do not start from a specific theory, because we want to include a wider field that allows to analyze several hypotheses.

Process of operationalization of concepts[modifier | modifier le wikicode]

There are two phases to translate theoretical concepts into something empirical.

  • operationalization of concepts: transforming concepts into variables, variables being something that can be manipulated while concepts cannot be processed because they are abstract.
  • selection of research instruments: data collection instruments and procedures.

Theory and hypotheses[modifier | modifier le wikicode]

It is the process of "deduction" that makes the link between theory and hypothesis, therefore derives from theory. However, it is difficult to distinguish between theory and hypotheses.

Theory[modifier | modifier le wikicode]

According to Corbetta, a theory is a set of propositions that are organically linked to each other and that is at a high degree of abstraction and generalization with respect to empirical reality, which derives from empirical regularities and from which empirical predictions can be made.

  • set of proposals: this is not one proposal, but several proposals, they are articulated and interrelated.
  • abstraction of proposals and generalization: the theory is at an abstract level. A theory is something that is intended to be general.
  • Theory derives from empirical regularities: the idea that theory comes from previous research and from empirical regularities that have been observed systematically and can be found in different contexts.
  • allows empirical forecasts: allows forecasts to be made according to conditions and context.

Hypotheses[modifier | modifier le wikicode]

According to Corbetta, a hypothesis is a proposition that implies a relationship between two or more concepts that are at a lower level of abstraction and generality than theory and that allows the theory to be translated into empirically controllable terms.

  • level of abstraction and generality lower than theory: assumptions are specific.
  • provisional nature of the hypothesis: hypotheses are subject to control by being verified and falsified, a hypothesis is never definitive.

Difference between theory and hypothesis[modifier | modifier le wikicode]

The essential difference between theory and hypothesis is that theory and a more general and abstract set of propositions whereas hypotheses are not specific enough to be variables, they are theoretical concepts, but a little less abstract.

The difficulty lies in the fact that we are in the gradation, one is a little less abstract than the other. The hypothesis allows us to go into the field in a direct way.

A theory must be able to be articulated into one or more empirically controllable hypotheses that can be transformed into a series of hypotheses. This is the criterion of scientificity, the theory combines theoretical propositions.

Criteria for the Scientificity of Assumptions[modifier | modifier le wikicode]

There are three important elements:

  • the assumption should not be too general.
  • a hypothesis must be positive in the sense that it must not include a normative dimension, there must be no judgment.
  • a hypothesis must be formulated in such a way that it is falsifiable.

The controllability of a hypothesis is fundamental. We must be able to compare it with field data. The hypothesis must be controllable.

According to Popper and Kuhn, a hypothesis must be falsifiable. This gives the hypothesis a scientific character because a good hypothesis must be refutable. For example, according to Popper, the proposition "God exists" is not a hypothesis because it is not refutable; however, the hypothesis "all swans are white" is falsifiable because they may be of a different colour. Thus the main characteristic that gives the relevance of a hypothesis is the fact that it is falsifiable.

  • falsifiable hypotheses: heavy objects tend down if nothing holds them back; it rains every Thursday.
  • non-falsifiable hypotheses: either it rains, or it does not rain; all the points of the circle are equidistant from the centre.

To sum up, the hypothesis to meet the criterion of scientificity must be falsifiable.

Examples of hypotheses in political science[modifier | modifier le wikicode]

Value Change Theory[modifier | modifier le wikicode]

Value change occurs through the replacement of successive generations of people. It is postulated that in post-war Europe there has been a transformation of value systems, from materialistic - security of material value, physical security - to post-materialistic - values linked to personal fulfilment and individual emancipation - to materialistic - security of material value.

The theory consists in saying that this change is due to the fact that generations after the Second World War were socialized in a situation referring to two factors :

  • economic growth
  • the expansion of the welfare state

According to this theory, people socialized during the time of expansion developed post-materialistic needs because they did not have the need for security; hence there is a tendency to value scarce resources.

There is another element that is focused on the idea of scarcity of certain resources, as people tend to favour resources that are scarce (economic wealth was daily), as they were socialized during the period of wealth expansion. On the other hand, this difference is greater in countries that have had greater economic expansion.

In this case, one cannot yet test or falsify the theory, one must move from theory to hypotheses by going towards something a little more specific which makes it possible to corroborate the affirmations :

  • young people are more post-materialistic than older people in Western countries: we are interested in young people compared to older people, the hypothesis is tested if young people are more post-materialistic than older people.
  • the difference between young people is less young is greater in countries where the change in quality of life has been stronger, in other words in countries where economic expansion at that time was the most important as in Germany.
  • Post-materialists are more numerous in the richest countries; indicators can easily be found to test this hypothesis.

There has been a set of organically articulated proposals, however this is useless to test the theory; for this it is necessary to formulate hypotheses that are also at the abstract and theoretical level.

Psychosocial Voting Theory[modifier | modifier le wikicode]

Article détaillé : Les modèles explicatifs du vote.

It is a theory of political behaviour also known as the "Michigan model" proposed in the 1950s. This theory postulates that people vote because they feel loyal to certain parties; it is through partisan identification that people will vote for a party because they identify with it.

This sense of party identification comes from the socialization process. However, we do not have enough substance, we are at the level of a set of proposals linked together in an organic way.

First of all, it is necessary to specify the hypotheses which are for example:

  • people who identify with the Socialist Party tend to vote for the Socialist Party; the degree of abstraction has fallen a notch.
  • People from working-class backgrounds tend to vote for the socialist party: this is a testable hypothesis, because one can easily go to the field to collect data.

Theory of political opportunities[modifier | modifier le wikicode]

This theory says that people mobilize because they are unhappy or because there are certain political opportunities to take to the streets.

The theory says that the forms and levels of mobilization depend on political opportunity structures. These political opportunities are to be sought in the structure of the state and in the degree of openness and closure of the state:

  • The demonstrations are smaller and at the same time they are more radical and violent in countries characterized by closed opportunity structures. We can test this hypothesis because we can identify more open or closed states.
  • the more the police repress demonstrations, the more radical they tend to become. It is enough to observe manifestations: in this case, there is a problem of endogeneity which is the problem of reverse causality, because the hypothesis postulates that the more the police will repress the more there will be a tendency to radicalisation, however the relationship could be the opposite and we do not know what explains what.

Operationalization[modifier | modifier le wikicode]

Definition of operationalization[modifier | modifier le wikicode]

We will focus on the moment when we pass to the field; operationalization is the moment when we define the research drawing: we start from a given theoretical framework and then we go to the field, we will deal with this passage.

In order to be able to control and verify, by taking up the idea of the critical theory i.e. to be able to falsify a hypothesis, one must be able to set up certain passages which answer the name of operationalization. This is a key moment in the research process.

Let us recall that according to Corbetta, the concept refers to the semantic content, therefore to the meaning of linguistic signs and mental images; the concept is an abstraction of reality, it is basically something general. In other words, the only way to know and think about a reality is conceptualization, which is the foundation, a fundamental phase of each scientific discipline.

On the other hand a concept can refer to abstract and non-observable mental constructions such as the concept of power or the social class, a concept can also refer to more concrete and observable entities such as a chair or a worker  however a concept always refers to the class of objects.

It is through the realization of concepts that one can establish an empiry.

Phases of operationalization[modifier | modifier le wikicode]

It can be divided into several phases, these are the key moments in the research process:

1) Render concepts into object properties (unit of analysis): concepts must be assigned and applied to objects; they are units of analysis that refer to the choice of analysis on which we will work. In other words, it means moving from a conceptual level to a measurable empirical level, transforming concepts, applying them to concrete objects and thus to units of analysis.

Example :

  • the concept of "power": must be able to be transformed into an object, for example, the role of power in an enterprise: we begin by defining the unit of analysis.
  • Economic development: must be applied to something concrete that could be the concept applied to nations.
  • electoral participation: one may be interested in territorial units that are collective property or individual property such as the frequency of participation in demonstrations.

Nota bene : these properties of objects will have different states depending on the objects in question, for example the economic development of France differs from that of Switzerland. The object properties vary according to the selected criterion.


2) To give an operational definition of concepts: rules must be established and decided in order to translate these concepts into empirical operations, in other words, rules must be established to translate the concepts into empirical operations.

Example :

  • power concept: power is defined first as the role you can have in an organization. Then we must specify the number of people over whom the individual exercises power (he can direct 1000 or 100).
  • voter turnout: if it is assumed that voter turnout is measured at the commune or canton level, then the percentage of voters in relation to the number of voters should be considered.


3) Apply the operational definition to concrete cases: this is the operationalization phase in the strict sense of the term, we are going into the field which makes it possible to define a variable.

  • variable: it is the result of the process, we move from a concept to a variable, they are the theoretical concretization of a concept.
  • modality: a value is applied to each modality as, for example, for the concept of level of education: university 5, primary 1, etc. This makes it possible to assess a person's level of education by establishing a code.
Opérationnalisation- schéma.png

Therefore, operationalization in the strict sense of the term is the transition from the property (concept) to the variable that depends on how the transition is made so that one can have different variables.

Concept--to--to--to-property--to--to--to-variable

Operationalization depends on how the concepts are translated:

  • categorization
  • orderly
  • measurement
  • counting (counting units)

It is necessary to reflect on what type of analysis we want to lead through the development of concepts.

It is essential to define the concepts; the concept has a relationship of meaning, it is a fundamental element of scientific research.

Operationalization: examples

  • Weight: weight of a book (1 kilo): it has no relation between the physical weight of a book and its impact in literature.
  • Age: Age of a person (20 years).
  • Education: level of education (university).
  • Power: political role (MP, minister, senator): it is difficult to define who has the most power, these are roles in which we cannot establish a hierarchy.
  • Participation: Voting (frequency).

Unités d’analyse[modifier | modifier le wikicode]

Dans la recherche empirique, on doit définir des unités d’analyse. L’unité d’analyse représente l'objet social ou politique dans la recherche empirique, c'est essentiel de la définir.

On distingue trois niveaux d’analyse, mais qui dépendent du contexte de la recherche :

  • macro ;
  • méso ;
  • micro.

On peut approfondir la distinction à 6 niveaux d’analyse :

  1. individu : ce sont les personnes.
  2. agrégat d’individus : ce sont des variables collectives agrégées ; c’est l'ensemble des individus qui est une variable collective. Par exemple si le taux de participation en Suisse est de 40%, ce calcul est effectué sur la base des variables individuelles.
  3. groupe / organisation / institution : variables collectives et structurelles, on ne passe pas par une agrégation des comportements individuels, c’est un processus différence de l'agrégat.
  4. événement : par exemple dans les études faites sur les révolutions, chacune peut être divisée en sous-événements.
  5. produit culturel : par exemple un tableau qui permet d’expliquer l’évolution d’une branche artistique.
  6. relation : accords, collaborations, des relations organisationnelles ou interindividuelles.

The first three levels of analysis are the most frequent, aggregated variables. There are structural or global variables that characterize an individual or group as such. Aggregate variables are derived from mathematical operations on individual variables whose unit of observation is at a lower level while structural variables are at the unit of analysis level.

At the end of the process, we have "cases" that are copies of a given analysis included in a research  when we speak of unit of analysis it is an abstract or general case, while the "case" is concrete is multiple to know what we are going to study.

Thus "cases" are the specific objects of research that can be defined once one has moved from the steps of defining a concept to the variables that allow one to choose cases and see how they vary on the variable resulting from the process.

There is really no right or wrong working definition, it is a matter of being as explicit and transparent as possible. Therefore, the choice made during the operationalization phase must be explained and justified.

There is always a gap between the empirical and theoretical level, one can never arrive at the perfect identification that can arrive at a fair or false operative definition.

Finally the danger in this phase is not in the reduction that is inevitable, but in the commodification, that is, in identifying the concept with the variable.

The operational definition must meet criteria of objectivity, it must arrive at a controllable process that can be repeated by others.

To know if it is a good operationalization, a choice must be justified, that is, it must meet a criterion of objectivity and justification without eliminating arbitrariness.

Criteria for distinguishing variables[modifier | modifier le wikicode]

The variable is an operationalized concept; there are several ways to define variables and therefore several ways to classify them:

  • non-manipulable / manipulable:
    • non-manipulable: these are variables that cannot be modified, for example, socio-demographic characteristics.
    • manipulable: the questions to ask.
  • dependent / independent:
    • dependent: variables explained; this is what we want to explain also called endogenous variable.
    • independent: explanatory variables; it is supposed to explain also called exogenous variable.
  • unobserved (latent) / observed (manifest):
    • unobserved: values are unobservable latent variables.
    • observed: opinions can be observed, for example.

Nota bene : when we work on values in science-politics we approach attitudes  through we go back to something unobservable.

  • Individual / collective (aggregate, global, contextual)
  • Value processing: this is the most important aspect, it is related to measurement. There are different types of variables. Knowing what type of variable we have to do will tell us what type of analysis we have to do; the whole process of operationalization and the end of the process, namely the creation of variables is fundamental leading to variables of different natures.

Types of variables[modifier | modifier le wikicode]

There are three types of variables that can be distinguished between four criteria

nominal ordinales cardinales
Property states: the values of the variable

Non-ordered and non-ordinable categories.

ex : nationality, religion

Also categorical, but ordered; one can create an order.

e.g. education level, to what extent are we interested in something.

More categories, but variables :

  • continue - ex : age = 1 year, 1 month, 3 hours),
  • discreet - ex: 1, 2, children, not half child!
Operationalization procedure

Classification logic.

We can put them in a certain order. They can be included in different categories. There is an ordonnénement, the ordinal variable results from the operative definition which consists in giving an order to the various objects.

  • Measurement :

interval between them is the same (1 year, for example) -v. continuous-

  • Counting :

we can count them -v. discreet-

Value Characteristics

The characteristic of values is names.

ex : Canadian, Swiss

The categories must be exhaustive. All categories must be contemplated and mutually exclusive.

Number with ordinal properties.

ex: little, enough, very; we associate a number to each state, this code is arbitrary.

Number with cardinal properties, the number reflects a real property.

ex: went to vote 5 times, one cannot arbitrarily associate figures.

Operations that can be carried out on securities

Equality or inequality.

ex: Muslim differs from Catholic

Equality or inequality, higher or lower order.

All mathematical operations, equivalences, differences, multiplication, etc. can be applied.

ex: a 40-year-old is twice a 20-year-old.

Types de variables.png

Corbetta distinguishes the quasi-cardinal variables, they are situated between the two, namely between the ordinal and the cardinal. They would be ordinal variables, but they are considered to be cardinal variables. We try to make a discrete or ordinal variable continuous.

These are ordinal variables that we try to render as continuous variables. We try to compare the difference between two values, for example (not, little, enough, very); we cannot say that the distance between "not" and "little" is the same as between "enough" and "very". They can be ordered, but the distance cannot be measured.

One way to proceed are the scales, for example from 0 - 10 to define whether we are left or right. From then on, we pass from ordinal to cardinal variables.

Relationship between concepts and indicators[modifier | modifier le wikicode]

It is the operationalization of complex concepts. Generally, complex concepts are not observable, one can only observe their manifestation, for example deviance, religion, power. These concepts are at a higher level of generality and abstract, and cannot be observed directly.

Most concepts in the social sciences can be defined as complex concepts that are more difficult to operationalize, that is, to transform them into the property of a unit of analysis.

Example: concept of religiosity; five different definitions are used to formulate it which are increasingly specific:

  • believing in a divinity: allows us to move towards concretization.
  • believing in the Christian god: each religion has its own definition of god.
  • belong to the Catholic Church
  • act according to the rules of the church: higher degrees of precision.
  • go to church every Sunday: one can try to operationalize the concept of religiosity by reducing it to going to church every Sunday.

Thus, we see how we can pass from the general to the specific through different passages.

How to measure and operationalize these complex concepts?

The concept can be subdivided into sub-concepts called indicators. Indicators are crucial in the operationalization process.

An indicator is a simpler, more specific concept of the original concept that can be immediately translated into observable terms.

Indicators are linked to more general concepts by an indicative relationship between the concept and the indicator. We go down the generality scale to more specific concepts; it is a semantic representation relationship between the indicator and the concept it is supposed to represent, indicate, measure.

In other words, we go down the scale of generality and abstraction from general concepts to more specific concepts linked to the first by affinities of meanings.

Nota bene : there is no right choice of indicators.

What is the relationship between the concepts and the indicator?[modifier | modifier le wikicode]

  • Partiality

A concept cannot be captured entirely by a single indicator, a given indicator covers only one aspect of that complexity of the concept. The indicators are partial representations. It is always necessary, if possible, to find several indicators for the same complex concept  a same complex concept can never be indicated by only one indicator, there is a criterion of multiplicity of indicators.

Example - religious practice may be an indicator of the component of the ritual dimension of religiosity, but religiosity also has other components such as religious feelings, religious ideology, religious affiliation, etc.

One should always be aware that an indicator is always in a biased relationship with the general concept it is supposed to indicate.

  • Polysemia

An indicator may overlap only partially with a concept  in other words the same indicator may be linked to several concepts, it may indicate, mean, represent different concepts.

Example - in theocratic societies, religious practice can be an indicator of social conformity rather than religiosity. The practice of religion can be both an indicator of social conformism and religiosity.

The same indicator only partially covers a concept while being an indicator of different concepts.

  • Arbitrariness

The choice of indicators is arbitrary, so they should be argued rather than shown to be correct. We must try to show the close link between the theoretical dimension of the concept and the empirical dimension, the two things cannot be dissociated.

The indicators of a complex concept can be found in several ways according to logical reasoning and even according to common sense or more systematic according to what has been done in previous research with an importance of literature.

Empirical translation of complex concepts: phases of the operationalization of complex concepts[modifier | modifier le wikicode]

If we have concepts that are not multidimensional, this phase can be suppressed; if we work with a complex concept, we must first simplify the complex by going through dimensions, it is a theoretical reflection, we analyze the concept in its main components of meanings.

There are four phases:

  1. Articulation of the concept in dimensions: we reflect on the other dimensions of the concept such as, for example, religiosity which has dimensions of practices, ideologies, etc. It is the passage from general abstractions to specific, we say that we can divide it into sub-concepts for each dimension, however we are not yet in the operationalization phase. The different aspects and meanings of the concepts are questioned.
  2. Choice of indicators: we ask ourselves the question of empirical translation, we decide which indicators we will choose. Indicators are more specific concepts, we are beginning to take a step towards variables such as being interested in participation in rituals which is part of the ritual participation or the religious practical dimension.
  3. Operationalization: indicators that are still concepts are transformed into variables. It is the creation of variables that can be, ordinal, cardinal or intervals. For example, with regard to religious practice, we will measure and operationalize religious practice, which is an indicator of one dimension of religiosity, that is, the number of times we go to church each year. This indicator falls under the behavioural component because choosing a "practical" indicator of religion determines a frequency.
  4. Index formation: all indicators are synthesized into a global measure. We are going to proceed with the formation of the indices, we are trying to group these indicators under a single measure, perhaps for example the construction of scales; on the empirical, concrete, specific level, we are trying to arrive at a measure, because it is easier to work with a variable than with a multitude of variables.

Depending on the research objectives, several measures or indicators will be selected.

Traduction empirique de concepts complexes- schéma.png

This graph shows the process that goes from the complex concept to indicators or more specific indicators that indicate the concept; then variables were created and then in the last step we will group the variables into a single measure called the index.

Through this operationalization process variables are created that can be, ordinal, cardinal, categorical or interval variables - ordinal. In this example we would have nine indicators from which to construct an index that summarizes the concept. One starts from a concept which is the theoretical level towards a variable, the index is a variable derived from the sum of the other operations on the various variables.

In this process there is always a possibility that there are errors that get introduced so that a variable is never completely assimilable to concepts, there is always a lag  what is important is first to know what are the different sources of errors that produce the lag.

Some errors can be corrected and others cannot, but knowing the problem is something very important.

Empirical translation of complex concepts: examples[modifier | modifier le wikicode]

Traduction empirique de concepts complexes- exemple1.png

Nota bene : we started to specify the concept through seven dimensions

Traduction empirique de concepts complexes- exemple2.png

Nota bene : the distinction between concept and dimension is relative, now participation has become a dimension of another concept notably through the criteria of polysemy, partiality and arbitrariness.

The complex concepts and indicators are all at the bottom of the concepts, we enter the empirical phase with the last step.

Traduction empirique de concepts complexes- exemple3.png

The idea is that we move from an abstract and general concept through sub-dimensions that allow us to choose good indicators in the sense that they are justifiable and justified in the context of theory being an indicative relationship with the concept we want to measure.

Errors in the transition from concepts to indicators[modifier | modifier le wikicode]

Erreurs dans le passage des concepts aux indicateurs.png

There is only partial coverage of the concept by the indicator, but there is always a gap between the observed value and the true value related to the concept being measured.

First, a distinction must be made between two types of errors:

  • systematic error, "constant error
  • accidental error, "variable error

Total error is the sum of accidental error and systematic error.

TOTAL ERROR = ACCIDENTAL ERROR + SYSTEMATIC ERROR

  • systematic error

Occur in all our measurements in a systematic way, for example everyone tends to overestimate their own participation.

  • accidental error

It is a variable error from one measurement to another, we measure differently at different times.

One of the two types of errors is more easily detectable than the other. If a problem remains constant, if we do not assume problems then we will not notice anything, that is why an accidental error is more easily identifiable.

There can be different types of errors resulting from a distinction between two phases:

1) indication phase: theoretical

Two types of errors can be distinguished:

  • Indicator: Due to poor indicator selection, the indicator does not measure what it is intended to measure. It is an error that is almost by definition constant or systematic, difficult to detect except through logical reasoning and intuition. In this case there is a problem with the validity of the indicator, i.e. it does not really measure the concept it is supposed to measure.
  • systematic: once done wrong, it will have repercussions on research.

2) empirical phase: operationalization error These errors can result from operationalization errors, they can be systematic or accidental. We can distinguish three sources of operationalization errors, in other words there are three moments at which we are subject to danger and risk of falling into these errors. However we will ignore the data processing error.

  • case selection: badly chosen cases, there may be errors.
    • coverage: consists of the fact that we did not cover the population we wanted to cover.
    • sampling: if the sample is taken according to certain procedures, the percentage of error can be calculated.
    • non-response: there are individuals who do not wish to respond to the survey, which will bias the analysis.

There are several sources of errors related to the selection of subjects in a first phase which is also an operationalization error.

  • observation: poor observation of cases
    • interviewer: errors linked to the interviewer, he/she could subject the interviewee to direct or indirect pressure.
    • interviewee: the person may misunderstand the question or deliberately bias the research.
    • instrument: the manner in which the issue is administered.
    • data processing mode: analyse in the wrong way.

There can be errors that make the initial concept no longer correspond or only partly correspond with the final concept which is the variable. To do this, we must be aware and put in place everything possible to reduce the time lag as much as possible. Note that the only type of error that can be measured is sampling error.

When we analyze the data, when we have the variables, we must be aware that the variable is only an approximation of the concept it is supposed to measure or operationalize.

On the other hand, we must ensure that these sources of errors are reduced to a minimum by trying to avoid any bias linked to the person interviewed, by using the right instrument and the right method of administration while covering the entire population that we are supposed to study by reducing non-response.

Reliability and validity[modifier | modifier le wikicode]

Indicators may be more or less reliable and valid. The question is to what extent is a "measure" reliable and valid?

  • Reliability

The notion of reliability refers to the possibility of reproducing the same measurement, i.e. the reproducibility of the measurement. It is the degree to which a certain procedure of translating a concept into a variable produces the same results in repeated tests with the same measuring instrument (stability) or with equivalent instruments (equivalence).

On the other hand, there is reliability related to internal consistency when there is a series of variables that are supposed to be part of the same concept or to measure the same concept. In this case there are coefficients which make it possible to measure this reliability as the alpha of Cronbar.

  • Validity

It is an Adequacy, the degree to which a certain procedure of translating a concept into a variable actually measures the concept that one intends to measure. A valid indicator is one that really measures what you want to measure.

To the question to what extent the variable we have operationalized, captured, captures and measures the concept as well as the reality we want to discover, we must refer to an adequacy.

Research aims to find indicators that are both reliable and valid.

References[modifier | modifier le wikicode]